Carbene-Stabilized Beryllium Borohydride

Robert J. Gilliard, Jr., Mariham Y. Abraham, Yuzhong Wang, Pingrong Wei, Yaoming Xie, Brandon Quillian, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson*
Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States

S Supporting Information

Abstract

The reaction of N -heterocyclic carbene, L :, with BeCl_{2} quantitatively yields $\mathrm{L}: \mathrm{BeCl}_{2} \mathbf{1}$ ($\mathrm{L}:=: \mathrm{C}\{\mathrm{N}(2,6-$ $\left.\left.\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{CH}\right\}_{2}$). The carbene-stabilized beryllium borohydride monomer $\mathrm{L}: \mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2} 2$ is prepared by the reaction of 1 with LiBH_{4}. Compound 3, prepared by the reaction of 2 with $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right] \cdot$ dioxane, represents an unusual "dual reduction" of the imidazole ring (i.e., hydroboration of the $\mathrm{C}=\mathrm{C}$ backbone and hydrogenation of the C2 carbene center).

It has been more than seven decades since Burg and Schlesinger reported the synthesis of beryllium borohydride, $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}{ }^{1}$ In the intervening years, this obscure laboratory curiosity has evolved into an intriguing hydrogen storage candidate possessing the highest hydrogen capacity ($20.8 \mathrm{wt} \%$) of all metal borohydrides. ${ }^{2}$ Although the original beryllium borohydride synthesis involved sequential borane addition to dimethylberyllium, reaction of beryllium chloride with alkalimetal borohydrides is an alternative preparative method. ${ }^{3}$ The molecular structure of monomeric beryllium borohydride has, surprisingly, flummoxed chemists since the original 1940 synthetic report. Confusing and contradictory findings have fueled debate for decades. ${ }^{4}$ Indeed, both bent and linear gasphase structures for the $\mathrm{B}-\mathrm{Be}-\mathrm{B}$ fragment in $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}$ have been suggested, while neither the number nor disposition of the bridging hydrogen atoms have been established with certainty. ${ }^{5}$ The revelation that solid-state beryllium borohydride consists of helical polymers of $-\mathrm{BH}_{4} \mathrm{Be}-$ and $-\mathrm{BH}_{4}-$ units situated about crystallographic screw axes ${ }^{6,7}$ only augmented the structural ambiguities. Might there be a facile means to stabilize, and thus help characterize, the long-sought structure of the beryllium borohydride monomer? N-heterocyclic carbenes (NHCs) have recently been utilized to stabilize a variety of highly reactive main-group molecules. ${ }^{8,9}$ Prominent examples from this laboratory include carbene-stabilized diborene, ${ }^{10,11}$ disilicon, ${ }^{12}$ diphosphorus, ${ }^{13}$ diarsenic, ${ }^{14}$ and the carbene-stabilized diphosphorus complexation of the $\mathrm{BH}_{2}{ }^{+}$ cation. ${ }^{15}$

Herein we report the synthesis, ${ }^{16}$ molecular structure, ${ }^{16}$ and computations ${ }^{17}$ of the carbene-stabilized beryllium borohydride monomer L: $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}(2)\left(\mathrm{L}:=: \mathrm{C}\left\{\mathrm{N}\left(2,6-\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{CH}\right\}_{2}\right)$. Significantly, compound 2 represents the first experimental example of an unambiguously structurally characterized monomeric $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}$ derivative. In addition, the unusual reducing capability of 2 is suggested by its reaction with
$\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$-dioxane to form 3, an unusual imidazole ring "dual reduction" product.

Recently, NHCs have been employed to stabilize group 2 hydrides. ${ }^{18,19}$ In particular, L:Be $(\mathrm{Me})\left(\mu-\mathrm{H}_{2}\right)(\mathrm{Me}) \mathrm{Be}: \mathrm{L}$ was observed to undergo imidazole ring opening with insertion of a BeH_{2} unit into a $\mathrm{C}-\mathrm{N}$ bond of an NHC ligand. ${ }^{19}$

NHC-complexed beryllium chloride, $\mathrm{L}: \mathrm{BeCl}_{2}$ (1), was quantitatively prepared by the reaction of L : with BeCl_{2}. Lithium borohydride reacts with 1 to afford 2 (Scheme $1 ; \mathrm{R}=$

Scheme 1. Synthesis of 1 and 2

2,6- $\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) as colorless prism-shaped crystals (67.8% yield). Beryllium borohydride has been reported to be highly reactive (even explosive) upon exposure to air or moisture. ${ }^{20}$ Indeed, the trimethylamine adduct of beryllium borohydride, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}: \mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}$, is pyrophoric. ${ }^{1}$ In notable contrast, 2 survives in air for several days without decomposition. The ${ }^{1} \mathrm{H}$ NMR imidazole resonances of $\mathbf{1}$ and 2 are at 6.39 and 6.42 ppm , respectively. The proton-coupled ${ }^{11} \mathrm{~B}$ NMR resonances of the $\left[\mathrm{BH}_{4}\right]^{-}$units in 2 exhibit a broad quintet at -31.2 ppm THF- d_{8}, like those of other metal borohydrides $\left[\mathrm{Li}\left(\mathrm{BH}_{4}\right)_{2}\right.$, $-42.0 \mathrm{ppm}\left(\mathrm{THF}-\mathrm{d}_{8}\right) ;{ }^{21}$ the corresponding ${ }^{1} \mathrm{H}$ resonance can be assigned unambiguously as a singlet at $0.06 \mathrm{ppm} \mathrm{THF}-\mathrm{d}_{8}$ in the ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum.

While the three-coordinate beryllium atom in 1 resides in a trigonal planar geometry [the CBeCl_{2} plane is staggered relative to the imidazole ring with a $\mathrm{Cl}(1)-\mathrm{Be}(1)-\mathrm{C}(1)-\mathrm{N}(1)$ torsion angle of 76°], compound 2 features a five-coordinate beryllium atom in a distorted square-pyramidal geometry (Figure 1). The $\mathrm{Be}(1)-\mathrm{C}(1)$ bond distance of $1.765(2) \AA$ in $\mathbf{2}$ is comparable to the computed value of $1.797 \AA$ for the simplified model compound $\mathrm{L}^{\prime}: \mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}(\mathbf{2 a})\left(\mathrm{L}^{\prime}:=: \mathrm{C}\{\mathrm{N}(\mathrm{Ph}) \mathrm{CH}\}_{2}\right)$ and the value of $1.773(5) \AA$ in 1 . Each $\left[\mathrm{BH}_{4}\right]^{-}$anion binds to the Be^{2+} center in a bidentate fashion through two bridging $\mathrm{Be}-\mathrm{H}-\mathrm{B}$ bonds. The $\mathrm{Be} \cdots \mathrm{B}$ distances in 2 (1.947 and $1.959 \AA$) are

[^0]

Figure 1. Molecular structures of $\mathbf{1}$ and 2. Thermal ellipsoids represent 30% probability. Some H atoms have been omitted for clarity. Selected bond distances (\AA) and angles (deg): For 1: $\mathrm{Be}(1)-\mathrm{C}(1), 1.773(5)$; $\mathrm{Be}(1)-\mathrm{Cl}(1), 1.881(6) ; \mathrm{Be}(1)-\mathrm{Cl}(2), 1.884(9)$. For 2: $\mathrm{Be}(1)-\mathrm{C}(1)$, $1.765(2) ; \mathrm{Be}(1)-\mathrm{H}(1), 1.586(14)$; $\mathrm{Be}(1)-\mathrm{H}(2), 1.549(19) ; \mathrm{Be}(1)-$ $\mathrm{H}(5), 1.530(15) ; \mathrm{Be}(1)-\mathrm{H}(6), 1.571(19)$; $\mathrm{B}(1)-\mathrm{H}(1), \quad 1.03(2)$; $\mathrm{B}(1)-\mathrm{H}(2), 1.07(2) ; \mathrm{B}(1)-\mathrm{H}(3), 1.045(17) ; \mathrm{B}(1)-\mathrm{H}(4)$, $1.057(17) ; \mathrm{B}(2)-\mathrm{H}(5), 1.19(2) ; \mathrm{B}(2)-\mathrm{H}(6), 1.12(2) ; \mathrm{B}(2)-\mathrm{H}(7)$, $1.04(2) ; \mathrm{B}(2)-\mathrm{H}(8), 1.048(18) ; \mathrm{Be}(1)-\mathrm{H}(1)-\mathrm{B}(1), 94.6(12)$; $\mathrm{Be}(1)-\mathrm{H}(2)-\mathrm{B}(1), 94.9(14) ; \mathrm{Be}(1)-\mathrm{H}(5)-\mathrm{B}(2), 90.6(11)$; $\mathrm{Be}(1)-\mathrm{H}(6)-\mathrm{B}(2)$, 91.1(13).
similar to those in polymeric $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}[1.918(4)-2.001(4)$ $\AA] .{ }^{7}$ Moreover, the $\mathrm{B}(1)-\mathrm{Be}(1)-\mathrm{B}(2)$ angle in $2\left(121.7^{\circ}\right)$ approaches those in $\operatorname{Be}\left(\mathrm{BH}_{4}\right)_{2}\left(123.5-124.8^{\circ}\right) .^{7}$ The average $\mathrm{B}-\mathrm{H}$ bond distance ($1.08 \AA$) in the $\left[\mathrm{BH}_{4}\right]^{-}$units of 2 is comparable to that in polymeric $\mathrm{Be}\left(\mathrm{BH}_{4}\right)_{2}(1.13 \AA)$. The Wiberg bond indices (WBIs) of the $\mathrm{B}-\mathrm{H}$ bonds in the $\left[\mathrm{BH}_{4}\right]^{-}$ units range from 0.87 to 0.99 . In contrast, the very low WBIs of the $\mathrm{Be}-\mathrm{C}(0.22)$ and $\mathrm{Be}-\mathrm{H}$ bonds ($0.07-0.08$) in 2 suggest significant ionic bonding character. Indeed, NBO analysis showed that while the sum of the natural atomic charges for each BH_{4} unit is -0.83 , the natural charge of the beryllium atom, +1.53 , is consistent with dicationic character.

The reaction of 2 with $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ •dioxane affords compound 3 (64.3% yield) (Scheme 2). The structure of 3

Scheme 2. Synthesis of 3

Figure 2. Molecular structure of 3. Thermal ellipsoids represent 30\% probability. Some H atoms have been omitted for clarity. Selected bond distances (\AA) and angles (deg): $\mathrm{B}(1)-\mathrm{C}(1), 1.615(2) ; \mathrm{B}(1)-$ $\mathrm{C}(29), 1.614(2) ; \mathrm{C}(2)-\mathrm{C}(3), 1.327(2) ; \mathrm{C}(1)-\mathrm{N}(1), 1.3550(16) ;$ $\mathrm{C}(1)-\mathrm{N}(2), \quad 1.3792(18) ; \mathrm{C}(28)-\mathrm{N}(4), \quad 1.448(2) ; \mathrm{C}(28)-\mathrm{N}(3)$, $1.454(2) ; \mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(29), \quad 113.97(11) ; \mathrm{B}(1)-\mathrm{C}(29)-\mathrm{N}(3)$, $112.28(11) ; \mathrm{B}(1)-\mathrm{C}(1)-\mathrm{N}(2), 126.98(12)$.
(Figure 2) indicates that the imidazole ring in an NHC ligand is reduced both by hydroboration of the $\mathrm{C}=\mathrm{C}$ backbone and by hydrogenation of the C2 carbon. Notably, lithium aluminum hydride has been used to reduce the C 2 carbon atoms of imidazolinium salts. ${ }^{22}$ Bertrand has reported the reduction of the carbene center of an (alkyl)(amino) carbene with H_{2}. ${ }^{23}$ Moreover, $\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}$.(pyrazine $)_{2}$ has been observed to undergo facile arene hydroboration. ${ }^{24}$ Indeed, a mixture of sodium borohydride and an osmium-carbonyl compound has been shown to reduce imidazole to imidazolidine. ${ }^{25}$ However, 3 is the first example of the "dual reduction" of both the $\mathrm{C}=\mathrm{C}$ backbone and the C 2 carbene center of an NHC ligand. Although the mechanism is unclear, our studies suggests that the combination of 2 and $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ dioxane is a prerequisite for the formation of 3 .

The X-ray structure of 3 reveals a BH_{2} fragment bridged between $\mathrm{C}(1)$ of a non-reduced NHC ligand and $\mathrm{C}(29)$ of a reduced NHC moiety. The $B(1)-C(1)$ bond distance of $1.615(2) \AA$ is marginally longer than those in anionic N heterocyclic dicarbene (NHDC) $-\mathrm{BH}_{3}$ binuclear complexes $[1.588(7)-1.602(7) \AA]{ }^{26}$ In contrast to the $\mathrm{C}(2)=\mathrm{C}(3)$
double bond $[1.327(2) \AA]$, the elongated $\mathrm{C}(29)-\mathrm{C}(30)$ bond [1.507(2) \AA] corresponds to a $\mathrm{C}-\mathrm{C}$ single bond. Moreover, $C(28)$ is bound to two hydrogens. The hydrogen at $C(29)$ and all of the geminal hydrogen pairs at $B(1), C(28)$, and $C(30)$ were located in the difference Fourier map.

The ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra of 3 support the "dual reduction" of the imidazole ring. Two resonances at 4.08 and 4.22 ppm are assigned to the two diastereotopic hydrogens at the C 2 carbon of the imidazole ring [$\mathrm{C}(28)]$, in accord with the C 2 proton resonances of similar saturated imidazolidines (4.29 and 4.59 ppm$).{ }^{22}$ The BH_{2} moiety is not evident in the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 . However, the proton-coupled ${ }^{11} \mathrm{~B}$ NMR spectrum of 3 contains a broad singlet with shoulders at -25.5 ppm , suggesting the presence of the BH_{2} unit in 3 .

The versatile N-heterocyclic carbene L: reacts with BeCl_{2} to form $\mathrm{L}: \mathrm{BeCl}_{2}$, $\mathbf{1}$. The reaction of $\mathbf{1}$ with LiBH_{4} affords $\mathbf{2}$, a carbene-stabilized analogue of the elusive beryllium borohydride monomer. Compound 2 exhibits unusual reactivity with $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ dioxane by dual reduction of an imidazole ring, affording 3.

ASSOCIATED CONTENT

(s) Supporting Information

Full details concerning the syntheses, computations, and X-ray crystal structure determinations, including CIF files for $\mathbf{1 - 3}$, and complete ref 17. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

robinson@uga.edu

Notes

The authors declare no competing financial interest.
Caution: Beryllium and its compounds are extremely toxic. Manipulation of the substances described herein requires special precautions.

- ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for support: CHE-0953484 (G.H.R., Y.W.), CHE-1057466 (P.v.R.S.), and CHE-1054286 (H.F.S.).

REFERENCES

(1) Burg, A. B.; Schlesinger, H. I. J. Am. Chem. Soc. 1940, 62, 34253429.
(2) Soloveichik, G. L. Mater. Matters 2007, 2, 11-14.
(3) Schlesinger, H. I.; Brown, H. C.; Hyde, E. K. J. Am. Chem. Soc. 1953, 75, 209-213.
(4) Derecskei-Kovacs, A.; Marynick, D. S. Chem. Phys. Lett. 1994, 228, 252-258.
(5) Saeh, J. C.; Stanton, J. F. J. Am. Chem. Soc. 1997, 119, 73907391.
(6) Lipscomb, W. N.; Marynick, D. J. Am. Chem. Soc. 1971, 93, 2322-2323.
(7) Marynick, D. S.; Lipscomb, W. N. Inorg. Chem. 1972, 11, 820823.
(8) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-91.
(9) Wang, Y.; Robinson, G. H. Dalton Trans. 2012, 41, 337-345.
(10) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2007, 129, 12412-12413.
(11) Wang, Y.; Quillian, B.; Wei, P.; Xie, Y.; Wannere, C. S.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 3298-3299.
(12) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069-1071.
(13) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970-14971.
(14) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. Chem.-Eur. J. 2010, 16, 432-435.
(15) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H. Chem. Commun. 2011, 47, $9224-$ 9226.
(16) See the Supporting Information for synthetic and crystallographic details.
(17) Frisch, M. J.; et al. Gaussian 94, revision B.3; Gaussian, Inc.: Pittsburgh, PA, 1995. Frisch, M. J.; et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(18) Arrowsmith, M.; Hill, M. S.; MacDougall, D. J.; Mahon, M. F. Angew. Chem., Int. Ed. 2009, 48, 4013-4016.
(19) Arrowsmith, M.; Hill, M. S.; Kociok-Kohn, G.; MacDougall, D. J.; Mahon, M. F. Angew. Chem., Int. Ed. 2012, 51, 2098-2100.
(20) Stosick, A. J. Acta Crystallogr. 1952, 5, 151-152.
(21) Onak, T. P.; Landesman, H.; Williams, R. E.; Shapiro, I. J. Phys. Chem. 1959, 63, 1533-1535.
(22) Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. Tetrahedron 1999, 55, 14523-14534.
(23) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439-441.
(24) Ingleson, M. J.; Barrio, J. P.; Bacsa, J.; Steiner, A.; Darling, G. R.; Jones, J. T. A.; Khimyak, Y. Z.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2009, 48, 2012-2016.
(25) Mondal, T. K.; Mathur, T.; Slawin, A. M. Z.; Woollins, J. D.; Sinha, C. J. Organomet. Chem. 2007, 692, 1472-1481.
(26) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. Organometallics 2011, 30, 13031306.

[^0]: Received: May 9, 2012
 Published: June 6, 2012

